This documentation is automatically generated by online-judge-tools/verification-helper
#include "math/matrix/matrix.hpp"
行列演算のための構造体.
O(n^3)
Matrix<int> mat(n, m)
: $n$行$m$列の行列を定義.Matrix<int> mat(n)
: $n$行$n$列の行列を定義.cin >> mat
: 入力を受け取る.cout << mat
: 分かりやすい形で出力.mat ^= r
: 行列累乗.mat[i][j]
: $i$行$j$列目の要素を取得.mat.determinant()
: 行列式./**
* @brief Matrix (行列)
* @docs docs/math/matrix/matrix.md
*/
template <typename T>
struct Matrix {
vector<vector<T>> A;
Matrix() {}
Matrix(size_t n, size_t m)
: A(n, vector<T>(m, 0)) {}
Matrix(size_t n)
: A(n, vector<T>(n, 0)) {}
size_t height() const { return A.size(); }
size_t width() const {
assert(height() > 0);
return A[0].size();
}
inline const vector<T> &operator[](int k) const { return A.at(k); }
inline vector<T> &operator[](int k) { return A.at(k); }
static Matrix I(size_t n) {
Matrix mat(n);
for (int i = 0; i < n; ++i) mat[i][i] = 1;
return mat;
}
Matrix &operator+=(const Matrix &B) {
size_t n = height(), m = width();
assert(n == B.height() and m == B.width());
for (int i = 0; i < n; ++i)
for (int j = 0; j < m; ++j)
(*this)[i][j] += B[i][j];
return *this;
}
Matrix &operator-=(const Matrix &B) {
size_t n = height(), m = width();
assert(n == B.height() and m == B.width());
for (int i = 0; i < n; ++i)
for (int j = 0; j < m; ++j)
(*this)[i][j] -= B[i][j];
return *this;
}
Matrix &operator*=(const Matrix &B) {
size_t n = height(), m = B.width(), p = width();
assert(p == B.height());
vector<vector<T>> C(n, vector<T>(m, 0));
for (int i = 0; i < n; ++i)
for (int j = 0; j < m; ++j)
for (int k = 0; k < p; ++k)
C[i][j] += (*this)[i][k] * B[k][j];
A.swap(C);
return *this;
}
Matrix &operator^=(long long k) {
Matrix B = Matrix::I(height());
while (k > 0) {
if (k & 1) B *= *this;
*this *= *this;
k >>= 1LL;
}
A.swap(B.A);
return *this;
}
Matrix operator+(const Matrix &B) const { return (Matrix(*this) += B); }
Matrix operator-(const Matrix &B) const { return (Matrix(*this) -= B); }
Matrix operator*(const Matrix &B) const { return (Matrix(*this) *= B); }
Matrix operator^(const long long k) const { return (Matrix(*this) ^= k); }
friend istream &operator>>(istream &is, Matrix &p) {
size_t n = p.height(), m = p.width();
for (int i = 0; i < n; ++i) {
for (int j = 0; j < m; ++j) {
is >> p[i][j];
}
}
return is;
}
friend ostream &operator<<(ostream &os, Matrix &p) {
size_t n = p.height(), m = p.width();
for (int i = 0; i < n; ++i) {
os << '[';
for (int j = 0; j < m; ++j) {
os << p[i][j] << (j + 1 == m ? "]\n" : ", ");
}
}
return os;
}
T determinant() {
Matrix B(*this);
assert(width() == height());
T ret = 1;
for (int i = 0; i < width(); ++i) {
int idx = -1;
for (int j = i; j < width(); ++j)
if (B[j][i] != 0) idx = j;
if (idx == -1) return T(0);
if (i != idx) {
ret *= -1;
swap(B[i], B[idx]);
}
ret *= B[i][i];
T vv = B[i][i];
for (int j = 0; j < width(); ++j) B[i][j] /= vv;
for (int j = i + 1; j < width(); ++j) {
T a = B[j][i];
for (int k = 0; k < width(); ++k) B[j][k] -= B[i][k] * a;
}
}
return ret;
}
};
#line 1 "math/matrix/matrix.hpp"
/**
* @brief Matrix (行列)
* @docs docs/math/matrix/matrix.md
*/
template <typename T>
struct Matrix {
vector<vector<T>> A;
Matrix() {}
Matrix(size_t n, size_t m)
: A(n, vector<T>(m, 0)) {}
Matrix(size_t n)
: A(n, vector<T>(n, 0)) {}
size_t height() const { return A.size(); }
size_t width() const {
assert(height() > 0);
return A[0].size();
}
inline const vector<T> &operator[](int k) const { return A.at(k); }
inline vector<T> &operator[](int k) { return A.at(k); }
static Matrix I(size_t n) {
Matrix mat(n);
for (int i = 0; i < n; ++i) mat[i][i] = 1;
return mat;
}
Matrix &operator+=(const Matrix &B) {
size_t n = height(), m = width();
assert(n == B.height() and m == B.width());
for (int i = 0; i < n; ++i)
for (int j = 0; j < m; ++j)
(*this)[i][j] += B[i][j];
return *this;
}
Matrix &operator-=(const Matrix &B) {
size_t n = height(), m = width();
assert(n == B.height() and m == B.width());
for (int i = 0; i < n; ++i)
for (int j = 0; j < m; ++j)
(*this)[i][j] -= B[i][j];
return *this;
}
Matrix &operator*=(const Matrix &B) {
size_t n = height(), m = B.width(), p = width();
assert(p == B.height());
vector<vector<T>> C(n, vector<T>(m, 0));
for (int i = 0; i < n; ++i)
for (int j = 0; j < m; ++j)
for (int k = 0; k < p; ++k)
C[i][j] += (*this)[i][k] * B[k][j];
A.swap(C);
return *this;
}
Matrix &operator^=(long long k) {
Matrix B = Matrix::I(height());
while (k > 0) {
if (k & 1) B *= *this;
*this *= *this;
k >>= 1LL;
}
A.swap(B.A);
return *this;
}
Matrix operator+(const Matrix &B) const { return (Matrix(*this) += B); }
Matrix operator-(const Matrix &B) const { return (Matrix(*this) -= B); }
Matrix operator*(const Matrix &B) const { return (Matrix(*this) *= B); }
Matrix operator^(const long long k) const { return (Matrix(*this) ^= k); }
friend istream &operator>>(istream &is, Matrix &p) {
size_t n = p.height(), m = p.width();
for (int i = 0; i < n; ++i) {
for (int j = 0; j < m; ++j) {
is >> p[i][j];
}
}
return is;
}
friend ostream &operator<<(ostream &os, Matrix &p) {
size_t n = p.height(), m = p.width();
for (int i = 0; i < n; ++i) {
os << '[';
for (int j = 0; j < m; ++j) {
os << p[i][j] << (j + 1 == m ? "]\n" : ", ");
}
}
return os;
}
T determinant() {
Matrix B(*this);
assert(width() == height());
T ret = 1;
for (int i = 0; i < width(); ++i) {
int idx = -1;
for (int j = i; j < width(); ++j)
if (B[j][i] != 0) idx = j;
if (idx == -1) return T(0);
if (i != idx) {
ret *= -1;
swap(B[i], B[idx]);
}
ret *= B[i][i];
T vv = B[i][i];
for (int j = 0; j < width(); ++j) B[i][j] /= vv;
for (int j = i + 1; j < width(); ++j) {
T a = B[j][i];
for (int k = 0; k < width(); ++k) B[j][k] -= B[i][k] * a;
}
}
return ret;
}
};